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Abstract

This work extends the recently published work of Antohe and Lage on the development of a macroscopic two-
equation turbulence model for an incompressible ¯ow in porous media. The di�erence occurs in approximating the
Forchheimer term in the time-averaged momentum equation. Unlike the Antohe and Lage's work, where only the
linear terms of the expansion are kept, in the presently proposed model we include the second-order correlation

term. This inclusion gives rise to an extra term in the transport momentum equation which, in turn, gives rise to
additional terms in the transport equations for the turbulent kinetic energy and the dissipation rate. The additional
higher order terms produce correlation coe�cients that are used to absorb any departure from the clear ¯ow when

expressing the two-equation turbulence model for incompressible ¯ow in a porous medium. 7 2000 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

In a recent paper, Antohe and Lage [1] presented a

detailed derivation of a two-equation model which was

proposed for the purpose of describing a nonsteady

turbulent ¯ow of an incompressible ¯uid through a

porous medium. By time-averaging the general macro-

scopic transport equations, including all terms (Nield

and Bejan [2]), they extended the theoretical basis for

the Reynolds average transport equations for clear

¯ow [3,4] and derived the two-equation turbulence

model for incompressible ¯ow in a porous medium. In

their derivation, to complete the time-averaging pro-

cess of the momentum equation, they expanded the

Forchheimmer term and kept only the terms which are

linear in the ¯uctuating velocities. Since most of the

statistical properties of turbulence are in the second-

order correlation terms, neglecting the higher order

ones in the ¯uctuating velocities may hide some im-

portant e�ects of the Forchheimmer term.

This paper describes the development of a modi®ed

form of [1] which includes the e�ect of the second-

order term in the approximation of the Forchheimer

term. The philosophical basis for this idea resides in

the expectation that suppression of modeling in the

hierarchy of moment equations to the second level in-

corporates more of the mechanics of turbulence and

thus leads to a more accurate formulation. It can be

argued that if models of the ®rst order lead to a
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reasonable description, as suggested in Ref. [1], it
might be expected that higher order approximation

might lead to a better description of the turbulence
e�ects of the Forchheimer term as well as to more
accurate solution of the mean momentum and mean

temperature equations in ¯ows through porous media.

2. Formulation of model equations

The ensemble average of the volume-averaged
equations governing the transport of mass, momentum
and energy in a rigid, isotropic and ®xed porous
matrix, for a constant-property Newtonian ¯uid can be

written as [1]:
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where � �ui, �p, �y� represent the ¯uctuating quantities and

�Ui, P, Y� represent the ensemble averages. Further
details of this Reynolds averaging procedure for clear
¯ow are available in Refs. [3] and [4].

The third term on the right-hand side of Eq. (2), the
Forchheimer term, may be expanded as
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where we assume that UjUj � �uj �uj: Next, using the
Binomial Theorem, the power series expansion of the
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Neglecting the higher order terms in �Uj �uj=UjUj), Eq.
(5) yields
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Substitution of Eq. (6), along with the averaging rules
[3], into Eq. (4) gives
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Here is where the present derivation deviates from that
of [1]. In that derivation, the second term was
neglected and only the ®rst term was retained. For the

reasons given in Section 1, the present derivation
retains the second term in approximating the Forchhei-
mer e�ect.

Substituting Eq. (7) into Eq. (2), the averaged
momentum equation becomes
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The energy equation (3) and the transport momentum
equation (8) can now be written in their most general

form as
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It should be noted that, except for the last term on the
right-hand side of Eq. (10), Eqs. (9) and (10) are iden-
tical to the corresponding terms in Ref. [1].

Classical closure of the transport momentum and
the energy equations expresses the Reynolds ¯ux, �ui �uj,
and the turbulent ¯ux of the temperatures, �y �uj, as [3,4]:
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where Sij is the mean strain-rate tensor, k � 1
2

�ui �ui is

the turbulent kinetic energy, nt is the turbulent kin-
ematics coe�cient and st is the turbulent Prandtl num-
ber.
For the k±e model, with k and e treated as principle

dependent variables, the following model for nt is pro-
posed:

nt � Cm
k2

e
�12�

where Cm is an empirical coe�cient. This concept
introduces additional physics (local values of k and e�
in the formulation. Thus, implementation of such a
model calls for equations for e and k: Formal deri-

vations of partial di�erential equations for the turbu-
lent kinetic energy and the mean dissipation rate are
presented in the following two subsections.

2.1. Model equation for k

The transport equation for the turbulence kinetic
energy can be obtained by a simple contraction of the
exact transport equation for the correlation �ui �uj: A
straightforward approach to ®nd the transport

equation for �ui �uj is to simply form the second moment
equation [4,5]
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momentum equation in operator form, de®ned as

@�ui � � @ui
@ t
� uj

@ui
@x j
� 1

rf

@p

@x i
ÿ nJ

@ 2ui
@x j@x j

� di3
�
1ÿ b�yÿ To �

�
g� f

n
K
ui

� f2 cF
K 1=2 �ujuj �1=2ui �14�

More explicitly, the Reynolds-stress transport Eq. (13)
is given by
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Thus, contraction of Eq. (15) yields the following
model equation for k
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The terms above have been grouped, following well-
established practices, so as best to allow a physical in-
terpretation of the processes. A short-hand symbol for

the process in question, which we shall use later to sim-
plify the equation, appears over each group of terms.
The ®rst four processes can be treated exactly while the

last three groups of terms contain unknown correlations.
Comparing Eq. (16) with Eq. (17) of Ref. [1], we can

see that Eq. (16), obtained as the result of the second-

order approximation of the Forchheimer term, con-
tains an extra term which is of a third-order level.
Thus, unlike the model equation presented in Ref. [1],
in the present model the third-order correlation

appears twice. To close the system, both terms contain-
ing the triple-velocity correlations, along with the
other correlation terms, which appeared in the

equation, must be modeled.
The terms
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in Dii, after being di�erentiated, can be interpreted as
representing a di�usive e�ect [3,4,6]. Thus, by analogy

with the model for the turbulent ¯ux of a scalar, they
can be described by a gradient model as
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where sk is a closure coe�cient.

In the Forchheimer term, the third-order correlation
does not appear di�erentiated, but can be loosely inter-

preted as describing the mean transport of the turbu-
lent kinetic energy in the kth coordinate direction. To
close the equation, one must express this term as a

function of the second-order quantities. For ¯ow with-
out porous media, much discussions of the represen-
tation of the triple-velocity correlation were presented

in Refs. [4,5]. The three most common models (Hanja-
lic and Launder [7], Daly and Harlow [8], and Mellor
and Herring [9]) used in conjunction with the second-

moment closure for this correlation fall into the fol-
lowing general form [5]
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where dijklmn is shown to be a function of the Reynolds
stress as well as the turbulence velocity and length

scale. In the presently proposed model (though the
model of Daly and Harlow [8] is simple), the ex-
pression used by Hanjalic and Launder [7] will be

employed. In the derivation of the model equation for
the triple-velocity correlation, they [7] modeled the
transport equation for the third-order moment, and
then extracted an algebraic expression from the mod-

eled equation by neglecting the transport terms and
assuming a Gaussian relation to link the fourth-order
correlation to the second-order correlation. Their

invariant expression for �uk �ui �uj is
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where Ct is the di�usion constant.
Using the triple correlation model as formulated

above, Eq. (16) becomes
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which appears as sink term, is the dissipation rate of
the turbulent kinetic energy. Comparing Eq. (21) to
Eq. (19) of Antohe and Lage [1], it is observed that the

neglect of the second-order correlation as done in Ref.
[1] is equivalent to the neglect of term Fiii in Eq. (21).
It is possible to show, via scaling argument, that this

term predominates over the term Fii of Eq. (21) when
k� e: Therefore, the model presented here is expected
to be more accurate than the model created by Antohe

and Lage [1], when the turbulence intensity of the ¯ow
is very high.
When applying this turbulence model, the distri-

bution of e over the ¯ow ®eld must be determined.
This is usually achieved, as will be shown in the next
section, by solving a transport equation for e:

2.2. Modeling the dissipation rate

There has been some discussion in the literature

(Hanjalic and Launder [6] for clear ¯ow, and Antohe
and Lage [1] for porous media ¯ow) as to which form
of the e model is more appropriate. Using the most
common approach, the exact equation for e is derived

by taking the following moment of the macroscopic
equation
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This equation involves several new unknown double

and triple correlations of ¯uctuating velocity, pressure
and velocity gradients, which are usually impossible to
measure with any degree of accuracy. Even for clear

¯ow, there is presently little hope of ®nding reliable
guidance from experimentalists regarding suitable
closure approximation. Thus, model assumptions have

to be introduced in formulating a usable e equation.
Models for the ®rst four group of terms, which cor-

respond to the clear ¯ow case, are considered ®rst. To
approximate these terms, we adopt the clear ¯ow

model and absorb any departure from the clear ¯ow in
the modeling of the Forchheimer term. In summary
(for the derivations of these terms see Refs. [4,6,10])

the closure approximations of these terms are:
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The Forchheimer term contains a number of corre-
lations of turbulent quantities for whose determination
a closed path must ®rst be prescribed. These unknown

correlations must be approximated by expressions con-
taining mean velocity gradients, Reynolds stresses and
e: The following paragraphs describe the assumptions

used to provide reasonable closing approximations of
these correlations.
The ®rst term in (vi) represents the turbulent trans-

port of the dissipation. The standard approximation

made to represent turbulent transport of scalar quan-
tities in a turbulent ¯ow is that of general gradient-dif-
fusion hypothesis [4]. Employing this hypothesis on the

®rst term and the assumption of local isotropy to the
remaining terms, it can be shown that
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The remaining group of terms, (vii), (viii) and (ix), can
be simpli®ed to
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where k is the turbulence kinetic energy, and
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Substituting Eqs. (25)±(32) into Eq. (24) one gets
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Rearranging the above equation, the ®nal form of the
dissipation rate equation becomes
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On the right-hand side of Eq. (34), one ®nds a term
that survives at high Reynolds number. The model
contains four free constants. In the standard pro-

cedure, these free constants of the model are deter-
mined on the basis of experimental data, existing
literature and computer optimization. However, none
of these exists for ¯ow through the porous media.

3. Closure coe�cients

The proposed k±e model has seven closure coef-
®cients that have been introduced in replacing

unknown double and triple correlations with ex-
pressions involving known turbulence and mean ¯ow
properties. The precise evaluation of these coe�cients

requires comparison of model predictions with
measured experimental results. Unfortunately, exper-
imental data of ¯ow in porous media are not very nu-

merous. Consequently, the best one can do is to set
the values of the closure coe�cients to assure agree-
ment with the limiting case, namely the limit as f41
and K41, which leads to the clear ¯ow case. There

is no loss of generality in doing this, however, since
these same general arguments have been used in the
two-equation macroscopic turbulence model for

incompressible ¯ow in porous media [1]. Thus, in a
®rst approximation, these coe�cients can be assigned
values close to the values for the clear ¯ow. In sum-

mary, the closure coe�cients for the second-order
model proposed in this study are as follows:

Ce1 � 1:44, Ce2 � 1:92, Ce3 � 0:13,

Cm � 0:08, and sk � 1:0
�35�
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Values for the coe�cients Ce4 and Ct must be deter-
mined from experiments or by performing direct nu-

merical simulation.

4. Conclusion

The present work develop a modi®ed form of the
k±e closure scheme for turbulent ¯ows of incompress-

ible ¯uids in porous media. The proposed derivation
of the transport equations is an improvement over that
developed in Ref. [1] in the following areas:

1. The linearization of the Forchheimmer term
assumed in Ref. [1] is relaxed, but in the present
model, to approximate this term, the second-order

term in the expansion is retained (Eq. (7)). It was
then demonstrated that inclusion of the second-
order term results in additional terms, which rep-
resent the form-drag e�ect of the porous matrix, in

the ensemble-averaged momentum equation, the tur-
bulent kinetic energy equation and the dissipation
rate equation.

2. Comparing the turbulent kinetic energy equation,
Eq. (21) and the dissipation rate equation, Eq. (34),
with the corresponding equations, Eqs. (19) and

(31) of Ref. [1], it is noticed that the model
equations developed in this paper contain two ad-
ditional closure coe�cients: Ct in the turbulent kin-

etic energy equation and Ce4 in the dissipation rate
equation. These additional closure coe�cients allow
one to use the clear ¯ow values given in Eq. (34),
because any departure from the clear ¯ow may be

adjusted via Ct and Ce4:

In order to explain and gain deeper insight into the

closure scheme and the ®nal transport equations,
further comprehensive numerical, analytical and exper-

imental work remains to be done. It is hoped that the
work presented in this article will serve as an ad-
ditional stimulant to initiate these activities and will

lead to further research in the area of turbulence mod-
eling for ¯ows in porous media.
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